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In situ high-resolution interferometry on horizontal facets of the protein lysozyme reveal that the local
growth rateR, vicinal slopep, and tangential~step! velocity n fluctuate by up to 80% of their average values.
The time scale of these fluctuations, which occur under steady bulk transport conditions through the formation
and decay of step bunches~macrosteps!, is of the order of 10 min. The fluctuation amplitude ofR increases
with growth rate~supersaturation! and crystal size, while the amplitude of then andp fluctuations changes
relatively little. Based on a stability analysis for equidistant step trains in the mixed transport–interface-
kinetics regime, we argue that the fluctuations originate from the coupling of bulk transport with nonlinear
interface kinetics. Furthermore, step bunches moving across the interface in the direction of or opposite to the
buoyancy-driven convective flow increase or decrease in height, respectively. This is in agreement with
analytical treatments of the interaction of moving steps with solution flow. Major excursions in growth rate are
associated with the formation of lattice defects~striations!. We show that, in general, the system-dependent
kinetic Peclet number, Pek , i.e., the relative weight of bulk transport and interface kinetics in the control of the
growth process, governs the step bunching dynamics. Since Pek can be modified by either forced solution flow
or suppression of buoyancy-driven convection under reduced gravity, this model provides a rationale for the
choice of specific transport conditions to minimize the formation of compositional inhomogeneities under
steady bulk nutrient crystallization conditions.@S1063-651X~96!11912-7#

PACS number~s!: 81.10.Aj, 47.20.Bp, 68.35.Ct, 87.90.1y

I. INTRODUCTION

Externally imposed modulations of crystal-growth condi-
tions typically result in compositional and structural varia-
tions ~zoning, banding, striations! in the crystals@1#. Growth
rate fluctuations and resulting striations can, however, also
occur under quasisteady conditions during melt solidification
in geological environments@2–4# and externally stable labo-
ratory experiments@5,6#, as well as in electrocrystallization
@7#, physical vapor transport@8#, and inorganic solution
growth processes@9–12#. Recently we found that such intrin-
sic fluctuations also exist in protein crystallization and pos-
sess a characteristic time scale of O~10 min! @13#.

Theoretical treatments of intrinsic growth rate fluctuations
have been based on both macroscopic and microscopic mod-
els. In the macroscopic approaches, the species fluxes and,
thus, growth rates are assumed to be governed by coupled
bulk transport and interfacial processes. Their rates depend,
respectively, linearly and nonlinearly on concentration~s!.
Nonlinearities in interfacial kinetics can be due to chemical
reactions that precede or compete with incorporation into the
crystal @2,3,14#, impurity effects@15,16#, or a delay in the
interface response to a perturbation in the local concentration
of a component@4#. The coupling of linear and nonlinear
steps results in unsteady rates with time constants largely
exceeding those of the individual steps@17–19#. The general
trend that emerges from the above models is schematically
illustrated in Fig. 1; see also Ref.@4#. If growth proceeds
under pure kinetics or transport control, where the interfacial
concentrationCs approaches, respectively, the bulk concen-
trationC` and equilibrium concentration~solubility! Ceq, the

system is stable, i.e., perturbations decay rapidly. For mixed
control, however, the system is unstable. Perturbations lead
to fluctuations about a mean growth rate. Maximum response
occurs if the weights of kinetics and transport in the overall
rate control are comparable.

Numerous microscopic models for unsteady growth in-
volve the formation, stability, and decay of step bunches
~macrosteps!. Stimulated by detailed observations of various
step patterns@20,21#, dynamic step bunching has been asso-
ciated with surface diffusion@22–25# and different kinetic
coefficients for incorporation into a step from the upper and
lower terraces~Schwoebel effect@26#!. Of particular impor-
tance for our investigation is an analysis of the stability of an
equidistant step train under diffusive solute bulk transport
conditions@27#. The authors assumed that the diffusion layer
width d is growth rate independent, as in rapid forced solu-
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FIG. 1. Schematic presentation of the dependence of rate fluc-
tuation amplitude on the coupling between transport and interface
processes, after Ref.@4#. Under either pure kinetics or transport
control, when the interfacial solute concentrationCs approaches,
respectively, the bulk or equilibrium concentration~C` or Ceq!,
perturbations decay.
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tion flows @28,29#, and that the solute concentration in the
solution increases linearly with distance from the growing
facet. For these conditions it was found that step bunching
occurs only in response to perturbations with wavelengthl
greater than a critical value

lc52pF G

sb
S D

b0
1d D G1/2, ~1!

with the capillary constant

G5Va/kBT ~2!

~V is the molecular volume in crystal, anda the surface free
energy!, solute diffusivityD, kinetic coefficient of the face
with an equidistant step trainb0 , and concentration super-
saturation in the bulksb5(C`2 Ceq!/Ceq. The wavelength
of the most rapidly developing perturbation is

lmax5A3lc . ~3!

Equation~1! identifies the kinetic Peclet number

Pek5b0d/D, ~4!

i.e., the relative weight of kinetics and transport, as the pa-
rameter governing stability. Under both pure kinetic~b0→0,
Pek→0) and transport control~d→`, Pek→`), lc→`.
Thus, similar to the general behavior depicted in Fig. 1, no
step bunching is predicted to occur in response to perturba-
tions of any wavelength. Of course, this linear stability
analysis cannot predict the magnitude and temporal charac-
teristics of the ensuing finite amplitude fluctuations. This can
only be the subject of a parametric analysis that takes into
account the specific layer generation mechanism and inter-
step interaction through a microscopic nutrient supply field.
Such efforts are underway in our group. However, evalua-
tions of Eqs.~4! and ~1! @see Sec. IV B# show that typically
Pek is finite andlc is of the order of 10mm. Hence, for any
macroscopic crystal size, equidistant step trains are unstable.
Since the formation of macrosteps is typically associated
with inclusion and defect formation@30,31#, the growth of
large and structurally homogeneous crystals usually requires
intensive stirring of the solutions. This, as we will see below,
is because convective nutrient fluxes in direction opposite to
that of step motion can reduce the formation of macrosteps
~step bunching!.

The interaction of step trains with convective-diffusive
solute transport has been analyzed in Refs.@32–36.# It was
found that convective flow affects the development of mac-
rosteps if

u`@nph ~5!

and

u`l0 /D.1, ~6!

whereu` is the bulk solution flow velocity parallel to the
interface, andnph is the phase velocity of the step density
wave with wavelengthl0 . For order of magnitude estimates,
nph is assumed to be comparable to the average step velocity
n̄. It is important to note that the relative direction plays a

crucial role for the stability of the step train. Solution flow in
the direction of step motion causes step bunching in response
to perturbations withl longer than

lc
f52.51p̄23/2S dD

u`
D 1/2, ~7!

where p̄ is the average slope of the vicinal face considered
@33#. Solution flow opposite to the step motion suppresses
bunching. This behavior was observed in forced solution
flow experiments with ammonium dihydrogen phosphate
crystals@32#.

Buoyancy-driven flow, which, due to solutal density gra-
dients, is always present in solution growth systems under
gravity, can also affect the stability of step trains. In most
inorganic systems, however, inequality~5! does not hold in
unstirred solutions. Typicalu`’s are of the order of 100mm/s
@37#, i.e., comparable to characteristicn’s @38,39#. In con-
trast, protein systems, due to their slow interface kinetics,
could provide an opportunity to observe such interactions
between natural convection and step motion. For instance,
for lysozymen̄ is typically 0.05–0.5mm/s @13,40,41#, while
u`’s are about 10 mm/s @42,43#. With this u`, D
50.7331026 cm2/s @44#, and observed step bunching wave-
length l05n̄Dt of about 50 mm @13#, Eq. ~6! yields
u`l0/D'7. Therefore, step trains should be affected by the
buoyancy-driven flows. This should reduce the macrostep
height along step trains moving from the center to the pe-
riphery of a horizontal facet since, in this case, the natural
convection flow is opposite to the step motion@42,45#. On
the other hand, as step bunches move toward the center of a
horizontal facet, their height can be expected to increase. At
the same time, evaluating Eq.~7! for lysozyme, with
p̄5531023 @40# andd5200mm @42#, yields a flow-induced
critical wavelengthl c

f'30 cm. Since this is orders of mag-
nitude larger than the typical crystal sizes of O~100mm!, it
is unlikely that the fluctuations observed in our earlier work
are due to flow-step train interactions.

In the following, we will identify the origin of these fluc-
tuations through simultaneous observations of the time-
dependent normal growth rateR, vicinal slopep, and tan-
gential velocityn, and their possible dependence on solution
purity, supersaturation, crystal size, and direction of step mo-
tion with respect to solution flow. In addition, we will ex-
plore the consequences of these intrinsic fluctuations for
crystal quality. For studies of the underlyingtime-averaged
growth kinetics, and its dependence on step sources and im-
purities; see Refs.@40, 46#.

II. EXPERIMENT

Solutions were prepared as described elsewhere@47,48#,
using lysozyme with three purity levels:~i! as supplied by
Sigma and~ii ! by Seikagaku, and~iii ! a Seikagaku lysozyme
purified to 99.9% with respect to higher molecular weight
proteins@49#. Growth solution temperatures were stabilized
to within 60.01 °C. Supersaturations were expressed ass
5 ln@C/Ceq(T)#, whereCeq(T) is the solubility at the tem-
peratureT of the experiment@47#. For the interferometry
setup ~depth resolution;200 Å!, data collecting and pro-
cessing routines, and their testing to ensure reliable measure-
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ments of the temporal dependencies of the kinetic quantities,
see Ref.@13#. Note that this technique simultaneously pro-
vides local values ofR andp at several points of interest on
the studied facet. The step velocityn is then calculated from
the relation

R~ t !5p~ t !n~ t !. ~8!

Due to the limitations in the experiment resolution, the local
determinations ofR represent integrals of the interferometric
intensity over interfacial areas of;0.530.5 mm2, while the
p values are averaged over distances of;3 mm; see Ref.
@13#. Both $110% and $101% tetragonal lysozyme faces were
studied. No differences were found; hence, only results for
the $110% faces are presented here.

III. RESULTS AND DISCUSSION

A. Fluctuations in R, p, and n, and step source effects

Figures 2 and 3 show that the local growth rateR, vicinal
slopep, and tangential velocityn are not steady and fluctuate
by as much as;80% of their average values. The variations
in p, which is proportional to the step density, indicate that
the fluctuations are due to the passage of step bunches. Note
that the excursions ofp andn tend to be in opposite direc-
tions: high and low step densities are associated, respec-

tively, with low and high tangential velocity. This indicates
strong overlap of the steps’ nutrient supply fields, as also
suggested by our earlier work on microscopic deviations
from perfect planarity of the facets@50#. This step interaction
is likely governed by overlapping surface diffusion fields
@50,51#. Furthermore, we found no dependence of the fluc-
tuations on solution purity for our system.

Figures 2 and 3 present fluctuation traces during the
growth of the same crystal. The growth hillock shown in Fig.
3 is steeper and, correspondingly, the average slope is
higher. Note that this is associated with higher fluctuation
amplitudes. The steeper slope reflects a step source of higher
activity, likely due to cooperation of a larger number of dis-
locations than in Fig. 2.

The characteristic fluctuation timeDt ~average time
between major excursions! is of O ~10 min!. For comparison,
the characteristics step generation timetstep5h/R̄, with
a step heighth of at most a few hundred Å and an average
growth rateR̄ of some 10 Å/s, is of O~10 s!. Hence, in
contrast to the findings with barium nitrate and potash alum
in, respectively, Refs.@10# and@12#, the fluctuation times are
at least several tens of times longer thantstep. However, in
another investigation, barium nitrate showed fluctuations in
R with 1 min,Dt,10 min @9#, which were interpreted in
terms of moving multidislocation step sources of varying
activity; see also Refs.@40,52,53#. In our investigations,Dt ’s
obtained with two-dimensional ~2D! nucleation- or

FIG. 2. Time traces of normal growth rateR, local slopep, and
tangential~step! velocity n, obtained at the marked location~3! of
the ~110! facet shown in the interferogram. Steps generated by dis-
location bunch outcropping in lower part of the facet; for details,
see Ref.@40#.

FIG. 3. Time traces of normal growth rateR, local slopep, and
tangential~step! velocity n, obtained at the marked location~3! of
the ~110! facet shown in the interferogram. Steps generated by dis-
location bunch outcropping below bottom of interferogram; for de-
tails, see Ref.@40#.
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dislocation-step sources were comparable. Therefore, we
conclude that our fluctuations are not caused by the dynam-
ics of multidislocation step sources, though they may be af-
fected by them.

B. Supersaturation and crystal-size dependencies

Figure 4 presents fluctuation traces recorded at the same
location of a crystal at increasing supersaturations. Note that
the fluctuation amplitude of bothp andn is independent of
s. At low s, n~t) andp(t) are largely in counterphase. With
increasings, the phase difference betweenn andp fluctua-
tions becomes more random, and consequently theR excur-
sions increase. We also see that the characteristic time of the
fluctuationsDt ~average time between major excursions! de-
creases with supersaturation. Ats52.84 @Fig. 4~c!#, Dt
drops to 20–30 min. In other experiments at comparable or
higher supersaturations, we observedDt ’s as short as 5 min.
In Fig. 5, we compare the fluctuations observed at a facet
center for two different crystal sizesa. We see that the varia-
tions inR, p, andn, and the fluctuation frequency, signifi-
cantly increase witha.

Supersaturation~average growth rate! and crystal size are
parameters that strongly affect transport to the interface

@37,54–57#. Hence, similar to the discussions in Refs.
@2–7,11,14#, we interpret the above observations in terms of
the nonlinear dynamics of coupled transport and surface ki-
netics. Since we found no impurity effects on the fluctua-
tions, and an interfacial chemical reaction that is nonlinear in
concentration is hard to envision, we conclude that the most
likely model for our system is similar to that proposed that
by Allegré, Provost, and Jaupart@4# ~see Sec. I!. In our case,
the required delay in the interfacial kinetics response to per-
turbations in surface supersaturationss can have various
causes. In growth by 2D nucleation, due to the stochastic
nature of this process, a local increase inss doesnot result in
an instantaneous appearance of a nucleus. On the other hand,
dislocation-generated steps are often pinned at the outcrop
points of other dislocations; see, e.g., Ref.@58#. Strong sup-
port of this interpretation comes from our parallel modeling
efforts, in which we describe the stochastic generation of a
large sequence of steps at the edge of the crystal and their
subsequent motion across the interface according to the mi-
croscopic supersaturation resulting from diffusive solute
transport. This model, evaluated with transport and kinetics
parameters characteristic of lysozyme crystallization, quanti-
tatively reproduces the amplitude andDt ’s of the observed
fluctuations@59#.

Even without the benefit of the above detailed model,
however, the relation between step bunch formation and sol-

FIG. 4. Time traces of normal growth rateR, local slopep, and
tangential~step! velocity n recorded at facet center of same crystal
at three different supersaturations. Layer generation by 2D nucle-
ation; see Ref.@40#. Crystal size;250 mm, increasing insignifi-
cantly during measurements due to slower growth of side faces.

FIG. 5. Increase of fluctuation amplitude at facet center location
with crystal sizea, and step generation by 2D nucleation;s52.84.
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ute supply toward the interface can be rationalized by a
simple scaling argument. If bunching and transport are re-
lated,Dt should correspond to the time required to restore
the interfacial supersaturation after the pasage of a mac-
rostep. If transport close to the interface is dominated by
diffusion, this timetD is of the order of

tD5d2/D, ~9!

whered is the characteristic diffusion distance. Thisd de-
pends on the strength of the convective flow about the crys-
tal. For this order of magnitude estimate, we taked5300mm
@42#. Thus, we obtain from Eq.~9! tD>1200 s, which is in
good agreement with the observedDt. Note that this crude
model also accounts for the observed decrease inDt with
increasingR. The steeper interfacial concentration gradient
asociated with higherR’s enhances convection and, thus,
reducesd.

On a microscopic level, we can compare our observations
with the predictions of the step train stability analysis by
Chernov and Nishinaga@27#. With V53310220 cm3 and
a>1 erg/cm2 @60,61#, according to Eq.~2!, the capillary
lengthG'1026 cm. Furthermore, withR>20 Å/s @40#, the
face kinetic coefficient, defined as

b f5R/~VCsb!, ~10!

whereC52.131018 cm23 is the molecular concentration of
the solution, becomes, withsb55, b f>1026 cm/s. Approxi-
matingb0 in Eq. ~1! by thisb f , we obtainlc>30mm. Since
perturbations can only affect crystals larger than their wave-
length, equidistant step trains on crystals larger than 30mm
are unstable and step bunches should form. Since the inter-
ferometric measurements in our setup require crystals>100
mm, we could not directly detect this limit. However, the
average step bunching wavelengthl0 should be of the order
of lmax of Eq. ~3!. In evaluatingl05n̄Dt from Figs. 2–5, we
see that this is the case.

As observed in Fig. 4, at higher supersaturations the fluc-
tuation amplitude ofR increases more than those ofp andn.
This can also be understood in terms of transport consider-
ations. Expandingn~t! in Eq. ~8!, the growth rateR at any
point on the interface can be written as

R~ t !5p~ t !b@p~ t !#ss~ t !, ~11!

where b(p) is a kinetic coefficient for incorporation of
growth units into steps, andss is the supersaturation at the
interface.@For clarity, it should be noted thatb is related to
b f of Eqs. ~1!–~4! through b f5bp/VC.# In our system,
b(p) decreases with increasingp due to the overlap of the
steps’~surface! diffusion fields; see Sec. III A. At low aver-
age growth rates, there is sufficient time after the passage of
a step bunch for the localss to recover. Hence the localss is
only insignificantly affected by variations in step density. As
a consequence, the opposite deviations inp andb(p) largely
compensate, yielding a nearly steadyR. At higher averageR,
however, the localss is strongly modulated by the passing
step bunches. This results inn fluctuations that are out of
phase with those inp, leading to pronounced nonsteadyR.

More formally, the relation between the changes in the
surface supersaturation and normal growth rate can be under-
stood if one considers the time derivative of Eq.~11!:

]R

]t
5F S 1

p
1
1

b

]b

]p D ]p

]t
1
1

ss

]ss

]t GR, ~12!

or

1

R

]R

t
5S 11

p

b

]b

]p D 1

p

]p

]t
1
1

ss

]ss

]t
. ~13!

Since

b~p!5b0~11kp!21, ~14!

wherek is a ~surface diffusion! step-field overlap parameter
@50#, and for our system

kp@1 ~15!

@50,51# it follows that

p

b

]b

p
'21. ~16!

Equation~16! reflects the observed compensation of the op-
posingp andn fluctuations due to the strong interstep inter-
action expressed by Eq.~15!. Thus the first term on the right
hand side of Eq.~13! is vanishingly small, and

]R

]t
'

R

ss

]ss

]t
. ~17!

As a consequence, in the absence ofss modulations,R
should be steady, even thoughp andn fluctuate.

Furthermore, we can show that even under conditions that
do not induceR fluctuations, step bunches that lead to varia-
tions in p may still form. From Eq.~13!, with ]R/]t50,

1

p

]p

]t
'S 11

p

b

]b

]p D 21 1

ss

]ss

]t
. ~18!

In contrast to Eq.~17!, the action of (]ss/]t) upon (]p/]t)
is amplified by the large value of [11(p/b)(]b/]p)]21 @see
Eq. ~16!#. Thus even small perturbations inss , that do not
result in significantR fluctuations, may lead to significant
variations in local slope–step density. In addition, Eq.~18!
helps to understand the significance of step field overlap for
the macrostep formation, and ultimately, for the kinetics
fluctuations. If the condition of Eq.~15! is not satisfied,
0>(p/b)(]b/]p)@21, and smallss perturbations may
only lead to insignificantp variations. This is similar to the
interstep interaction effects on microscopic morphology for-
mation on a much larger length scale. In the latter case, su-
persaturation nonuniformities of<10% between facet center
and edge induce up to fivefold increases in average slope
@50,51#.

C. Modification of step bunching by solutal convection

The increases in fluctuation amplitude with supersatura-
tion and crystal size could indicate a dependence on super-
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saturation nonuniformity which increases with boths anda
@54-56#. These observations could also indicate a role of
buoyancy-driven convection, which, as mentioned above,
also increases in strength with the larger density gradients
resulting at highers ~i.e.,R! and largera @37,57#. To distin-
guish between these possibilities, we investigated the depen-
dence of the fluctuation amplitude on the direction of step
motion with respect to the anticipated convective flow direc-
tion across the interface. In our experimental arrangement,
the crystal rests on the bottom of the crystallization cell with
the observed facet in horizontal orientation@13#. The growth-
induced reduction in solute concentration at the interface re-
sults in a convection plume above the facet’s center region
@42,43,45#. Thus solution flows parallel to the interface from
opposite edges toward the center, and then rises upward. As
a consequence, steps originating in the center and edge re-
gions move, respectively, against or in the direction of the
flow.

Figures 6 and 7 show that the amplitude of the fluctua-
tions, especially ofp and n, is substantially higher at the
facet center, independent of the location of the dislocation
step source. In similar observations on other crystals we
found that this also holds for layer generation by 2D nucle-
ation. Note, however, that as step bunches move from the
edge to the center of the facet, the amplitude increases~Fig.
6!. On the other hand, step motion toward the edge is asso-
ciated with an amplitude decrease~Fig. 7!. This differs from
impurity-induced step bunching, where the height of the
forming macrosteps is always expected to increase with dis-
tance from the step source; see, e.g., Refs.@62,63#. Note also
that the observations in Fig. 7 support the conclusion made
by evaluating Eq.~7!, Sec. I, that the fluctuations do not
represent solution-flow-induced step train instabilities. We
see that fluctuations are present even with antiparallel step
and solution flow directions, while solution flow causes mac-

FIG. 6. Increase of fluctuation amplitude and
step bunch height with distance from dislocation
step source;s51.64. The arrow indicates the di-
rection of step motion.

FIG. 7. Decrease of fluctuation amplitude and
step bunch height with distance from dislocation
step source;s51.13. The arrow indicates the di-
rection of step motion.
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rosteps only in the case of coinciding directions.
As was shown above@32–36#, the dependence of the fluc-

tuation amplitude on the direction of step motion can be
understood in terms of convective transport effects. Evaluat-
ing Eqs.~5! and ~6! in Sec. I, we predicted that buoyancy-

driven convective flows should affect the development of
step bunches in our system. Qualitatively, when the direc-
tions of the step train and flow motion coincide, the leading
part of a step bunch is exposed to lower interfacial supersatu-
rations and concentration gradients than the trailing one, as
schematically illustrated in Fig. 8~b!. Hence fewer steps
leave the step bunch from the front than join it at the rear.
This interaction between flow and kinetics further increases
the number of elementary steps in a bunch resulting in a
higher macrostep. However, during step propagation oppos-
ing the flow @Fig. 8~c!#, ss and ugradCu are higher at the
leading steps than at the trailing ones. Consequently, more
steps leave the bunch than join it. This reduces the macrostep
heighten routeacross the interface.

If the above considerations apply to our system, step
bunches moving from an edge of a facet through the center
to the opposite edge and, thus, ‘‘through’’ the convection
plume from parallel to antiparallel flow conditions, should
first exhibit an increase and then a decrease in fluctuation
amplitude. Figure 9 shows that this is the case.

For completeness, it must be mentioned that growth rate
fluctuations could also be due to convective instabilities.
Such instabilities associated with a convection plume have
been observed in the solution growth of inorganic crystals;
see, e.g., Ref.@64#. Likewise, as suggested by other solution
growth experiments, it is possible that low growth rates@45#,
or, in particular, certain combinations of solutal and thermal
density gradients@65#, are associated with unsteady convec-
tive transport. Thus, nonsteady convection flows could pos-
sibly exist in the solution during our experiments. Yet the
above directionality of the changes in fluctuation amplitude,
as well as the observed amplitude dependence on the type of
growth step source and crystal size, are difficult to interpret
in terms of a unsteady bulk convection model.

IV. EFFECTS ON CRYSTAL PERFECTION

A. Fluctuation-induced striations

Figure 10 shows heavy veils in the~110! sectors of a
lysozyme crystal grown from a Sigma solution. The forma-

FIG. 8. Schematic illustration of solution flow effects on solute
distribution ~thin isoconcentration lines! over a step bunch~heavy
profile!: ~a! no solution flow;~b! solution flow in the direction of
step motion;~c! flow against step motion. Note the concentration
gradient changes on the up- and down- flow sides of the bunch, and
displacements of the concentration minimum.

FIG. 9. Initial increase and subsequent de-
crease of fluctuation amplitude and step bunch
height with distance from 2D nucleation step
source;s52.84. The arrow indicates the direc-
tion of step motion.
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tion of these veils was intentionally induced through tem-
perature changes, as described in detail in Ref.@48#. Between
these pronounced features, one notices faint striations. The
spacing of these fine striations is of the order of micrometers.
This coincides with the fluctuation length scale, i.e., the
product ofDt and averageR during growth under similar
conditions; see Fig. 5. Although we have not demonstrated
causality at this point, it appears that, similar to some vapor
growth @8# and geochemical@2-4# systems, in lysozyme the
growth kinetics fluctuations result in crystal striations and,
thus, decrease the structural quality of the crystals. More-
over, from our observations one can expect some connection
between the position of the steps sources on a facet, the
orientation of that facet in the gravity field and the resulting
structural quality in the corresponding growth sector.

B. Modification of nonlinear response through changes
in transport conditions

About 20% of the proteins and viruses that were crystal-
lized under reduced gravity yielded higher x-ray-diffraction
resolution than their controls grown on Earth@66#. The re-
mainder either showed no improvement, or diffracted to
lower resolution either due to smaller sizes or, as docu-
mented for a few cases, lower crystal perfection@67#. Based
on our findings, we can speculate on how changes in the
transport conditions may affect the quality of the protein
crystals or other systems with mixed transport-kinetics con-
trol. If, for instance, for the growth of a certain~protein!
material on Earth, bulk transport and interfacial kinetics have
comparable weights in overall rate control, its ‘‘operating
point’’ lies near the maximum in Fig. 1. Then fluctuation
amplitudes in response to perturbations may be significant.
In this case, a shift of the working point to the right due to
slower transport under low gravity conditions can dampen
the fluctuations. This can result in higher crystal perfection.
On the other hand, crystallization systems with slower sur-

face kinetics and faster transport would operate in the left
part of the diagram. Then, upon suppression of transport in
space, fluctuation amplitudes may increase, and the crystal
quality decrease.

The relative importance of transport and interface pro-
cesses can be characterized by the kinetic Peclet number, Eq.
~4! @68,69#. Values of Pek,0.1 indicate dominant interfacial
kinetics control, Pek’s>1 imply transport control. We evalu-
ated Pek for four proteins that have been crystallized both on
Earth and under reduced gravity, and for which the kinetic
coefficients @40,41,70,71#, as well as the diffusivities are
known @44,72,73#. Of these, space-grown lysozyme and
thaumatin crystals often diffract only to the resolution
achievable on Earth~see, e.g., Refs.@74,75#!. On the other
hand, space-grown canavalin and satellite tobacco mosaic
virus ~STMV! crystals yielded higher diffraction resolution
@76,77#. The Pek’s of these systems are listed in Table I. The
value for lysozyme and thaumatin reflect kinetics-dominated
growth. For lysozyme, this is expected from earlier studies
@41,42,48,78,79#. Hence, from the point of view of nonlinear
response, an increase of transport’s contribution to growth
rate control under reduced gravity should not result in in-
creased structural perfection. Observed exceptions@80# may
have been the result of reduced impurity incorporation
and/or the lack of sedimentation in space, see below. The
Pek’s for canavalin and the STMV indicate that these sys-
tems operate on Earth more in the mixed control regime than
lysozyme. Hence we postulate that the higher perfection of
space-grown crysytals of these materials is due to a reduction
in nonlinear response, i.e., a shift of the working point
toward transport control resulting from the diffusive trans-
port at low gravity. Similarly, one may attempt to improve
the perfection of~protein! crystals that, on Earth, grow in the
mixed control regime, by moving their working point toward
kinetics control by appropriate imposed solution flow. We
are currently investigating this possibility.

Of course, besides the possible damping of growth rate
fluctuations, there are other benefits for crystal perfection in
space experiments. In the absence of buoyancy-driven con-
vection, the interfacial concentration of slowly diffusing,
growth-impeding impurities, can be substantially lower
@46,77#. Furthermore, in space the sedimentation of foreign
particles or microcrystals on a growing facet is reduced
@76,77#. Note, however, that the mechanism put forth above
provides a system-dependent rationale for advantages as well
as disadvantages of reduced-gravity growth conditions for
~protein! crystal perfection.

The nonlinear response of layer growth dynamics ob-
served above may also underlie earlier observations in the
growth of crystals on Earth. It has been widely recognized
that the growth of homogeneous inorganic crystals, such as
ammonium dihydrogen phosphate~ADP! requires intensive
stirring of the nutrient solution. This can be interpreted in
terms of the instability of equidistant step trains under diffu-
sive transport conditions. As evaluated in Table I for typical
growth conditions, the critical wavelength@see Eq.~1!# for
ADP is of the order of 20mm. Thus step bunching is un-
avoidable, and facets rapidly become covered by macrosteps,
overhangs, and inclusions@30,81#, unless, as discussed in
Sec. I, one takes advantage of the stabilizing effect of forced
convection on step trains that move opposite to the forced

FIG. 10. Differential interference contrast micrograph of a crys-
tal grown from Sigma solution at 2.2,s,2.84. Three heavy stria-
tions in the~110! sectors are caused by imposedDT51 °C @48#.
Faint striations in between~T stable within 0.01 °C! are likely
caused by intrinsic growth rate fluctuations.
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flow. Note that, since step trains move in various directions,
optimum stabilization requires frequent reversal of the solu-
tion stirring direction. Although these considerations provide
a consistent frame of interpretation, our results suggest that
under mixed control conditions step bunching in solution
growth may be more complex. In Table I, we evaluated Pek
for the growth of ADP in unstirred and stirred solutions. One
sees that without forced solution flow, rate control is mixed.
This will likely lead to step bunching as a result of the non-
linear response of the system. On appropriate stirring, how-
ever, the system’s operating point moves towards kinetics
control, where the amplitude of potential fluctuations is re-
duced. This scenario provides a supplementary alternative to
the earlier interpretations.

V. SUMMARY AND CONCLUSIONS

We have shown that, under all growth conditions studied,
lysozyme growth kinetics fluctuate by as much as 80% of
their average value, independent of solution purity. The as-
sociated variations in local slope~step density! indicate that
the fluctuations occur through the dynamics of step bunch-
ing. The local slope and step velocity fluctuate approxi-
mately in counterphase, indicating strong step field overlap.
Major excursions in the fluctuation amplitude are associated
with the formation of compositional-structural striations.

The observed dependence of the fluctuation amplitude on
supersaturation and crystal size, as well as the increased av-
eraged frequencies at higher supersaturations, indicate that
the unsteady growth is due to a higly nonlinear response of
the system, that results in the mixed control regime from the

coupling of solute bulk transport with nonlinear interface
kinetics. The nonlinearity in kinetics may arise from the
strong overlap of the step’s supply fields, as well as from the
delays in the response to interfacial supersaturation changes
associated either with the random character of 2D nucleation
or with the interaction between steps and dislocation out-
crops.

Buoyancy-driven convection is not necessary for the gen-
eration of the fluctuations. However, convection significantly
affects the effective macrostep height and fluctuation ampli-
tude along the step pathway by altering the interfacial super-
saturation distribution. If the direction of step motion is the
same as that of convective flow, the fluctuation amplitude
increases, while counterflow dampens the fluctuations.

Thus crystal quality may be improved by changing the
ratio of transport to surface kinetics control by either enhanc-
ing or reducing transport in the solution. We speculate that
this is one of the intrinsic reasons for the better quality of
someof the protein crysytals grown under reduced gravity
conditions. At the same time, this model provides a system-
dependent rationale for advantages as well as disadvantages
of reduced gravity for~protein! crystallization. Furthermore,
these observations suggest that some of the step bunching
observed in inorganic systems may also be due to nonlinear
response of step dynamics in the mixed control regime.
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